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Abstract Angular correlation coefficients τ nl,n′l ′ [p]between
linear momenta of an electron in a subshell nl and another
electron in a subshell n′l ′ are studied for the 102 neutral atoms
He through Lr in their ground states, where n and l are the
principal and azimuthal quantum numbers, respectively. We
theoretically find that electron momenta are negatively corre-
lated or uncorrelated; τ nl,n′l ′ [p] < 0 when |l −l ′| = 1, while
τ nl,n′l ′ [p] = 0 when |l − l ′| �= 1. Numerical examinations
of the atoms show that except for the He–B atoms, negative
correlations are largest between 1s and 2p subshells, which
have the most diffuse electron distributions in momentum
space.

Keywords Correlation coefficients · Subshell pairs ·
Momentum space · Atoms

1 Introduction

Statistical correlation coefficients introduced by Kutzelnigg
et al. [1] provide useful tools for analyzing electron correla-
tions in various wave functions. Even for the Hartree–Fock
wave functions, we have nonvanishing correlation coeffi-
cients, which enable us to assess the Fermi correlation [2].
Thus, the meaning of correlation is essentially different from
that of “electron correlation” defined by Löwdin [3], since
the latter is the difference between the exact nonrelativistic
and Hartree–Fock descriptions. The correlation coefficient
τ [ f ] in position space is given [1] by

τ [ f ]= 2N <
∑

i< j f (ri ) f (r j )>− (N −1)<
∑

i f (ri )>
2

(N − 1)
(
N <

∑
i f 2(ri ) > − <

∑
i f (ri ) >2

) ,

(1)

where f (r) is a probe function and the angular brackets 〈〉
indicate the expectation value over the N -electron (N ≥ 2)

H. Matsuyama · T. Koga (B) · Y. Kawata
Department of Applied Chemistry, Muroran Institute of Technology,
Muroran, Hokkaido 050-8585, Japan
E-mail: Koga@mmm.muroran-it.ac.jp

wave function �(x1, . . . , xN ) with xi = (ri , σi ) being the
combined position-spin coordinates of the electron i . The
correlation coefficient is [1] bounded as −1 ≤ τ [ f ] ≤ +1
for any f (r). Electrons are perfectly correlated if τ [ f ] = ±1,
while they are uncorrelated or independent if τ [ f ] = 0.

A particularly important τ [ f ] is the angular correlation
coefficient τ [r], which is obtained by setting f (r) = r in Eq.
(1) and is given [1] for atomic systems by

τ [r] = 2 <
∑

i< j ri · r j >

(N − 1) <
∑

i r2
i >

, (2)

where ri · r j = rir j cos θi j , ri = |ri |, and θi j is the angle
between position vectors of two electrons i and j . The corre-
lation coefficients τ [r] have been examined as a measure of
angular correlations for He [4–11], Li [6,10–13], Be [6,10–
16], B – Ne [6,10–12], Na–Si [6,11], and P–Lr [11]. Recently,
correlation coefficients τ i j [r] between two spin-orbitals i and
j and τ nl,n′l ′ [r] between two subshells nl and n′l ′ have been
studied [17], where n and l are the principal and azimuthal
quantum numbers, respectively. It has been shown that τ i j [r]
is negative for two parallel-spin orbitals with azimuthal quan-
tum numbers different by unity, while zero otherwise. For the
102 atoms He (atomic number Z = 2) through Lr (Z = 103)
in their ground states, the negative correlation in τ nl,n′l ′ [r]
has been found to be largest between the outermost s and p
subshells.

The correlation coefficient τ [ f̄ ] in momentum space is
also defined, if we replace f (r) with a momentum-space
probe function f̄ (p) and �(x1, . . . , xN ) with a momentum-
space wave function �(y1, . . . , yN ) in Eq. (1), where yi =
(pi , σi ) is the combined momentum-spin coordinates of the
electron i . A special case of τ [ f̄ ] for f̄ (p) = p gives [1] the
momentum-space angular correlation coefficient τ [p] as

τ [p] = 2 <
∑

i< j pi · p j >

(N − 1) <
∑

i p2
i >

, (3)

where pi · p j = pi p j cos θ̄i j , pi = |pi |, and θ̄i j is the
angle between linear momenta of two electrons i and j . The
coefficient τ [p] is a measure of correlations between linear
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momenta of any two electrons. Examinations of τ [p] have
been reported for He [11,18–21], Li [11,13,22], Be [11,13,
16], B–Na [11], Mg [11,20], and Al–Lr [11].

In the present paper, we study subshell-pair correlation
coefficients τ nl,n′l ′ [p] between linear momenta of an elec-
tron in a subshell nl and another electron in a subshell n′l ′.
The next section outlines mathematical structures of τ [p]
and τ nl,n′l ′ [p] in the Hartree–Fock theory. In the third sec-
tion, numerical results of τ nl,n′l ′ [p] are discussed for the 102
atoms He through Lr in their ground states. We will find that
for a given pair of subshells nl and n′l ′(n �= n′), the negative
correlation in momentum space decreases with increasing
|n − n′|, but for sp and pd subshell pairs in the same shell,
it increases as n increases.

2 Subshell-pair correlation coefficients in momentum
space

The theoretical structure of correlation coefficients τ [p] in
momentum space is analogous [17] to that of τ [r] in position
space. Therefore, we briefly summarize the Hartree–Fock
theory of the correlation coefficients in momentum space.

We assume that a momentum-space wave function �(y1,
. . . , yN ) of an N -electron atom consists of N orthonormal
spin-orbitals φi (p)ηi (σ ) and that a spatial function φi (p) is
the product of a radial Pi (p) = Pni li (p) and a spherical har-
monic Yli mi (θ̄ , φ̄) functions, where ηi (σ ) is the spin function,
mi is the magnetic quantum number, and (p, θ̄ , φ̄) is the polar
coordinates of the electron linear momentum p. As in position
space [17], we have the correlation coefficient τ i j [p] of two
spin-orbitals i and j in momentum space as

τ i j [p] = − 2δs(i, j)| < p >i j |2
< p2 >i i + < p2 > j j

, (4a)

where

< X >i j=
∫

dpφi ∗ (p)Xφ j (p). (4b)

When the two spin-orbitals have the same spin, the spin inte-
gral δs(i, j) = ∫

dσ ηi ∗ (σ ) η j (σ ) in Eq. (4a) is unity. When
they have the opposite spins, δs(i, j) is zero. Equation (4a)
leads to a few important results: (1) Since δs(i, j) = 1 or
0, τ i j [p] ≤ 0 for any two spin-orbitals. This means that the
angle θ̄12 between p1 of a spin-orbital i and p2 of another
spin-orbital j is larger than π/2 on average. (2) The pres-
ence of the integral δs(i, j) indicates that τ i j [p] appears only
from the exchange term. Thus, τ i j [p] in the Hartree approx-
imation is equal to zero. (3) For the wave function assumed
above, a selection rule [23] concludes that < p >i j = 0 and
hence τ i j [p] = 0 unless |li − l j | = 1. The spin-orbital-pair
coefficient τ i j [p] and the total coefficient τ [p] are related by

(N − 1) <
∑

i

p2
i > τ [p]

=
∑

i< j

(< p2 >i i + < p2 > j j ) τ i j [p]. (5)

Gathering the τ i j [p] contributions, we have the subshell-
pair correlation coefficient τ nl,n′l ′ [p] as

τ nl,n′l ′ [p] = −2δ1,|l−l ′| Ānl,n′l ′ Bnl,n′l ′, (6)

where δi j is the Kronecker delta, the angular constant Bnl,n′l ′
is defined in Ref. [17], and the radial contribution Ānl,n′l ′ is

Ānl,n′l ′ = | < p >nl,n′l ′ |2
< p2 >nl + < p2 >n′l ′

(7a)

in which

< p >nl,n′l ′=
∞∫

0

dp p3 Pnl ∗ (p)Pn′l ′(p), (7b)

< p2 >nl=
∞∫

0

dp p4|Pnl(p)|2. (7c)

Corresponding to Eq. (5), the relation between τ nl,n′l ′ [p] and
τ [p] is given by

(N − 1) <
∑

i

p2
i > τ [p]

=
∑

nl<n′l ′
Mnl,n′l ′(< p2 >nl + < p2 >n′l ′) τ nl,n′l ′ [p], (8)

where Mnl,n′l ′ is the number of electron pairs in subshells
nl and n′l ′. Since Ānl,n′l ′ and Bnl,n′l ′ are both positive, we
find that τ nl,n′l ′ [p] ≤ 0, where the equality holds when |l −
l ′| �= 1. For the 102 atoms He through Lr in their ground
states, no subshells with g or higher azimuthal quantum num-
bers appear. Thus, the correlation coefficients τ nl,n′l ′ [p] for
seven types of subshell pairs ss, sd, s f, pp, p f, dd , and f f
are zero, while τ nl,n′l ′ [p] for three types of subshell pairs
sp, pd , and d f are negative. In particular, all the subshell
pairs in the ground-state He, Li, and Be atoms are uncorre-
lated, since they have only s subshells. When either or both
of two subshells are closed, Bnl,n′l ′ depends only on l and l ′
values. A few explicit values [17] are 1/6 for sp, 1/15for pd ,
and 3/70 for d f subshell pairs. For such subshell pairs with
the same l and l ′ values, the relative magnitude of τ nl,n′l ′ [p]
is determined by Ānl,n′l ′ , since Bnl,n′l ′ is common.

3 Numerical results and discussion

For the 102 atoms He through Lr, we considered the ground
electronic configurations and L S terms [24]. The radial
functions Ri (r) in position space of these states were first
generated by the numerical Hartree–Fock method based on
a modified version of the MCHF72 program [25]. By the
use of Talman’s algorithm [26], the radial functions Pi (p) in
momentum space were then obtained by the Hankel transfor-
mation of Ri (r). The correlation coefficients τ nl,n′l ′ [p] were
calculated from Eq. (6).
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Table 1 The correlation coefficients τ nl,n′l ′ [p] in momentum space for 48 subshell pairs with |l − l ′| = 1 of the Rn atom

Subshell pair −τ nl,n′l ′ [p] Subshell pair −τ nl,n′l ′ [p] Subshell pair −τ nl,n′l ′ [p]
1s2p 5.666(–2) 2p3s 3.849(–3) 2s2p 1.627(–4)
1s3p 1.159(–2) 2p4s 9.454(–4) 3s3p 8.262(–4)
1s4p 2.879(–3) 2p5s 2.099(–4) 4s4p 2.454(–3)
1s5p 5.736(–4) 2p6s 2.890(–5) 5s5p 5.689(–3)
1s6p 6.016(–5) 6s6p 1.102(–2)

3p4s 6.300(–3)
2s3p 3.062(–2) 3p5s 1.339(–3) 3p3d 8.204(–4)
2s4p 7.888(–3) 3p6s 1.880(–4) 4p4d 3.457(–3)
2s5p 1.634(–3) 5p5d 9.005(–3)
2s6p 1.740(–4) 4p5s 6.991(–3)

4p6s 9.651(–4) 4d4 f 4.252(–3)
3s4p 1.648(–2)
3s5p 3.667(–3) 5p6s 6.034(–3)
3s6p 4.048(–4)

3d4p 1.033(–3)
4s5p 6.585(–3) 3d5p 1.869(–4)
4s6p 8.179(–4) 3d6p 2.001(–5)

5s6p 1.135(–3) 4d5p 2.023(–3)
4d6p 2.053(–4)

2p3d 3.187(–2)
2p4d 6.266(–3) 5d6p 1.998(–3)
2p5d 9.631(–4)

4 f 5d 5.504(–4)
3p4d 1.137(–2)
3p5d 1.977(–3)
4p5d 1.965(–3)
3d4 f 1.559(–2)

A(n) means A × 10n

Using the heaviest rare-gas atom Rn (Z = 86) as an
example, we discuss the characteristics of subshell-pair cor-
relation coefficients τ nl,n′l ′ [p]. The Rn atom in the ground
state has six s, five p, three d , and one f subshells. The total
number of possible subshell pairs amounts to 120, which con-
sist of 72 subshell pairs with |l − l ′| �= 1 and 48 subshell
pairs with |l −l ′| = 1. The correlation coefficients τ nl,n′l ′ [p]
of the former are exactly zero, while those of the latter are
negative. The correlation coefficients of the 48 subshell pairs
with |l −l ′| = 1 are shown in Table 1. Based on the quantum
numbers of subshell pairs nln′l ′, we separate the 48 subshell
pairs into three groups; the first group is 22 subshell pairs
with n < n′ and l ′ = l + 1 (the left block in Table 1), the
second is 17 subshell pairs with n < n′ and l ′ = l − 1 (the
middle block in Table 1), and the third is nine subshell pairs
with n = n′ and l ′ = l + 1 (the right block in Table 1).

In the first group, we find two rules for the dependence of
τ nl,n′l ′ [p] on n and n′: (1) For subshell pairs with common
n, l, and l ′, the negative correlation decreases with increas-
ing n′ without exceptions. For example, we have 1s2p >
1s3p > 1s4p > 1s5p > 1s6p. (2) For subshell pairs with
common l, n′, and l ′, the negative correlation increases as n
increases, except for np 5 d subshell pairs. A typical example
is 1s6p < 2s6p < 3s6p < 4s6p < 5s6p. The two rules
hold as well for the second group. We find another rule in
the third group: (3) For subshell pairs with common l and
l ′, the negative correlation increases with increasing n = n′.
An example is 2s2p < 3s3p < 4s4p < 5s5p < 6s6p. The

three rules found for the Rn atom are valid for all the atoms
examined, though there are minor exceptions. The rules im-
ply that τ nl,n′l ′ [p] is mainly dependent on a radial overlap
between momentum distributions associated with the sub-
shells nl and n′l ′, because the overlap largely affects Ānl,n′l ′
through the factor < p >nl,n′l ′ . We observe in general that for
subshell pairs in different shells the overlap becomes larger
when |n − n′| decreases, and that for subshell pairs in the
same shell the overlap becomes smaller when n decreases.

When we consider all the 102 atoms, there are 7,569 sub-
shell pairs, which are classified into 188 pairs according to
the combination of nl and n′l ′. They are divided into uncor-
related 115 pairs with |l − l ′| �= 1 and negatively correlated
73 pairs with |l − l ′| = 1. Among the 73 pairs, the 1s2p
subshell pair is found to have the largest negative τ nl,nl ′ [p]
value, as seen in Table 1 for the Rn atom (−0.05666). The
largest negative correlation of the 1s2p subshell pair is attrib-
uted to the facts that the angular constant B1s2p is larger than
those of pd and d f subshell pairs and the constant Ā1s2p
is large due to the meaningful radial overlap between the
two subshells. Minor exceptions are the He–Be atoms where
only s subshells are occupied and the B atom where the 2 s2
p pair is largest. These results are in contrast with those in
position space, where τ nl,n′l ′ [r] is generally largest between
the outermost s and p subshells [17].

We next examine how the correlation coefficients τ nl,n′l ′

[p] change from an atom to another. The 73 negatively cor-
related subshell pairs are divided into two groups, that is,
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Fig. 1 The Z -dependence of six representative subshell-pair correlation coefficients τ nl,n′l ′ [p]

62 subshell pairs with n �= n′ and eleven subshell pairs
with n = n′. The former τ nl,n′l ′ [p] values are observed
to decrease with increasing Z in general. This is also true
[17] in position space for τ nl,n′l ′ [r] between two different
shells. On the other hand, the latter τ nl,nl ′ [p] values with
n = n′ have an increasing trend when Z becomes larger.
This is different from the Z -dependence of τ nl,nl ′ [r] in posi-
tion space, where the correlation coefficients are almost con-
stant [17]. Since Bnl,n′l ′ is independent of Z , the different
Z -dependences of τ nl,n′l ′ [p] between pairs with n �= n′ and
n = n′ originate from different Z -dependences of Ānl,n′l ′ .
We find that the denominator of Ānl,n′l ′ always increases
with an increasing Z , but the Z -dependence of the numera-
tor of Ānl,n′l ′ is determined by whether n �= n′ or n = n′.
When Z increases, Ānl,n′l ′ of subshell pairs in different shells
increases, while Ānl,nl ′ of subshell pairs in the same shell
decreases. In fact, the radial subshell interaction measured
by the magnitude of the radial overlap becomes larger for
subshell pairs with n �= n′, while it becomes smaller for
subshell pairs with n = n′, as Z increases. Figure 1 shows
the Z -dependence of six representative τ nl,n′l ′ [p] with larger
negative correlations.

4 Summary

The angular correlation coefficients τ nl,n′l ′ [p] between linear
momenta of an electron in a subshell nl and another elec-
tron in a subshell n′l ′ were examined based on the numerical
Hartree–Fock calculations for the 102 atoms He through Lr
in their ground states. The correlation in momentum space
has been found to be different from that in position space. We
have clarified the dependence of τ nl,n′l ′ [p] on the quantum

numbers. In momentum space, the correlation coefficient of
most atoms is largest for the 1s2p subshell pair.
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